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The brain’s function is to process sensory information, compare it to previous
experience, and produce behavior. However, the brain is too complex to permit us
to understand how this occurs by specifying all the elements and' connections.
Therefore we must try to learn what principles single neurons use to code informa-
tion and how that information interacts in populations.

There are two important ideas connecting stimulus features to neuronal function
and cortical organization. The first is that neurons are tuned (i.e., particular stimulus
features yield big responses) and when the stimulus features are changed, the
neuronal responses become smaller. The second is that neurons responding to
similar stimuli or conditions are grouped together.

In the early visual system it is possible to relate one or more stimulus parameters
such as edge orientation or stimulus color directly to the response strength (Hubel
and Wiesel, 1962), with the stimulus eliciting the most intense response referred
to as the optimal stimulus. If each neuron has an optimal feature and we take the
extreme view that only the strongest response has an influence, the coding can be
regarded as labeled lines, where each neuron codes for its particular optimal feature,
and the pattern of activated neurons is the code. We know, however, that the
responses are graded, and thus each neuron can be regarded as a filter against
which the stimulus is measured (or in the motor system, the movement). When the
relation between neurons is known, the message can be regarded as a vector sum
of the activities of the neurons weighted by the relation among them. This approach
has been used elegantly in the motor system by Georgopoulos et al. (1988) to show
that motor cortex carries enough information to code for direction of movement
and dynamics.
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58 THE RELATIONSHIP BETWEEN NEURONAL CODES AND CORTICAL ORGANIZATION

The second important property relates stimulus characteristics, neuronal re-
sponses, and the anatomical relation of neurons. Mountcastle (1957) first proposed
that neurons with similar properties were grouped together in cortical columns.
Hubel and Wiesel (1962) later showed that neurons within primary visual cortex
change the direction of the peak in orientation gradually as different neurons are
encountered at successive locations across the cortex.

These ideas are very powerful and have helped us to understand how sensory
information is processed. However, we still do not fully understand how the activities
of neurons are combined to provide the capabilities we see in behavior. Thus, we
must figure out what pieces are missing.

NEURONAL CODE DIMENSIONALITY

A basic assumption of the neuron doctrine is that single neurons carry information
in their responses (Barlow, 1972). For fast signaling, information is clearly carried
by means of action potentials, and it is obvious that the number of action potentials
is an important part of the signal. Until about 10 years ago, this was the only
response parameter considered for the neural code in visual system neurophysiol-
ogy. However, it is clear that the code can accommodate considerably more complex-
ity: the arrival time of every spike, for example, can carry information.

The spike count or the average firing frequency is most often used as the response
measure related to the information. When only the spike count carries information,
a single number specifies the response. However, even in this simple case the
response must be defined in terms of time, usually by counting the number of spikes
within a specific time window.

To investigate the role of time variation, we must clarify what we are looking
for. Trivially we know that many neurons have responses that are related to changes
in the stimuli; for example, simple cells in V1 cycle are in phase with the rate at
which a sinusoidal grating drifts across a receptive field (Movshon et al., 1977a).
When stimulated by the same drifting gratings, the responses of complex cells are
more constant (Movshon et al., 1977b), with the degree of constancy being depen-
dent on spatial frequency (Spitzer and Hochstein, 1985). In general, this type of
coding is a univariate function of the stimulus, here encoding some aspect of the
contrast changing in time. This type of temporal modulation was termed temporal
coding by Miller and Theunissen (1995).

A more complex type of coding takes place when a static stimulus is switched
on and the pattern of activity changes as a function of the stimulus pattern. In this
case different aspects of the stimulus can be encoded by different parameters of
the response. When this type of time variation occurs, it is necessary to somehow
record the spike arrival times, and thus the number of parameters needed to specify
a response is increased. We could require that each spike time be explicitly repre-
sented, greatly increasing the number of parameters needed. However, we would
always like to use the smallest number of parameters possible to describe the
information in the response. When the pattern of the response changes in some
significant manner, and the change is independent of the change in number of
spikes, the response is multivariate. Miller and Theunissen called this second type
of coding temporal encoding.
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To account for the stimulus-related aspects of neuronal responses, it is important
to estimate the dimensionality of the stimulus-related response. It is clear that
temporal patterns of neural activity in the visual system change in relation to the
stimulus (Fig. 3.1). However, it does not appear that the spikes in different responses
occur with a precise pattern, suggesting that the response dimensionality is not as
high as the number of spikes in a vigorous response.

We would like the number of parameters to be as small as possible, while
representing the response components accurately enough to prevent the loss of
information. Since the spikes do not appear to be exactly placed in time, there is

Figure 3.1 Responses of a V1 complex cell showing different patterns over time to two
different stimuli. Time is represented as going from left to right. Each line of dots shows
the times of the neuronal action potentials for one stimulus presentation. The stimulus
appears at time zero and remains on for 320 ms, shown by the length of the hollow bar
under each display. These two sets of responses have statistically indistinguishable numbers
of action potentials during the stimulus presentations. However, the patterns in which the
action potentials occur differ significantly.



60 THE RELATIONSHIP BETWEEN NEURONAL CODES AND CORTICAL ORGANIZATION

the possibility of reducing the data to some intermediate representation, one that
is richer than a single number, but still more compact than the result of specifying
each spike exactly. Principal component analysis (Figs. 3.2 and 3.3) offers one
systematic way to reduce the dimensionality of data (Ahmed and Rao, 1975; Rich-
mond and Optican, 1987).

The principal components are the most efficient linear transform for a data set.
Furthermore, they are ordered, with each accounting for more variance than any
that follow. Thus, the first one accounts for the largest proportion of the variance.
For our data, the first principal component is closely related to the spike count
(Richmond and Optican, 1987), which is clearly related to the stimulus. The first
principal component typically accounts for a little more (about 10% bigger) variance
than the spike count, which shows that having a little temporal variation in the
weighting of the counting window is helpful. When static stimuli are suddenly
switched on, we find that other principal components are related to the stimulus,
also (Fig. 3.3) (Richmond and Optican, 1987). In our analyses to date, up to five
principal components have been needed to describe the stimulus-related aspects
of the neuronal responses. This can be shown with many statistical methods including
ANOVA (Richmond and Optican, 1987).
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Figure 3.2 Average response and first five principal components (PC) extracted from the
responses of the neuron used for Figure 3.1. The responses elicited by the whole stimulus
set are used. The average response and the first principal component are very similar in
shape. The subsequent PCs increase in the number of zero crossings.
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Figure 3.3 Weights of the first five principal components for 2 out of 176 stimulus patterns,
128 Walsh patterns, and 24 white and 24 black bars, from the same data shown in Figure
3.1. The weights of the first principal component are not significantly different, whereas the
weights from the second are very different (p < 0.01, 7 test). The three rows of response
waveforms are the response reconstructions using one, two, and three principal compo-
nents, respectively.

We also want to know whether different response components carry the same
or new information about the stimulus. Information theory provides a natural
framework for analyzing and discussing neural signals (Optican and Richmond,
1987; Richmond and Optican, 1990). It quantifies an intuitive concept: How much
information about a stimulus is carried in a spike train?

In the application of information theory, the stimuli are considered as one code
and the response as another (Cover and Thomas, 1991). To apply information
theory, we must postulate what the codes are, and we code the stimulus according
to the question we are asking. For example, we might give each stimulus a code if
we are asking how well members of a set can be distinguished. Or we could recode
the stimuli according to their contrast, to allow examination of the question of
whether there is more information about the stimulus identity or about the contrast.
We must also postulate the response code, or we can postulate several response
codes and ask which ones carry the most information.

The mutual or transmitted information is defined as

I(S;R) = 2 H(s) — H(s|r) (3.1)
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where s is the stimulus, S is the stimulus set, r is the response, R is the response
set, H is the entropy or uncertainty of the stimulus, p(s)log p(s), and H(s|r) is
the conditional entropy about the stimulus given the response. In this form, the
transmitted information is the difference between the uncertainty in the stimulus
set minus the uncertainty left after a response has been received. Equation 3.1 can
be rewritten as

SR) =2 <p(s|r>log2"7(§-’)l>r (32)

where p(s) is the probability of stimulus s occurring, p(slr) is the conditional probabil-
ity that stimulus s elicited response r given that r was observed, and the angle
brackets indicate an average over all responses r. As alluded to earlier, the response
can be a vector quantity; that is, the response can be multidimensional.

As can be seen from equation 3.2, the conditional probability p(s|r) must be
estimated. As the response dimensionality of the response increases, estimating
the probability distributions needed to calculate information becomes increasingly
difficult. Consider the following example: to have no information, every response
must predict each stimulus with equal probability. However, if there are so few
responses that each response could occur once for each stimulus, then it is not
possible to realize that the stimulus does not favor some responses over others.
This problem has been addressed explicitly in several studies over the past several
years (Optican et al., 1991; Tovée et al., 1993; Kjaer et al., 1994; Panzeri and Treves,
1996; Golomb et al., 1997). At least two reasonably satisfactory procedures have
been developed to make estimates of the needed probability distributions (Kjaer
et al., 1994; Panzeri and Treves, 1996; Golomb et al., 1997).

In the method described by Kjaer et al., (1994), a neural network is used to
estimate the conditional probabilities (Fig. 3.4). Cross-validation prevents the neural
network from overlearning, hence overestimating, the information. The network
gives conservative estimates of the information (i.e., the estimates tend to be low
when there are not enough data). Although the computation time for the network
can be long even for a univariate response, it scales well as the response dimensional-
ity climbs. In the method described by Panzeri and Treves (1996), the amount by
which the information is overestimated by the raw information measurement is
itself estimated by examining the variance structure of the data. The increment of
the overestimate is subtracted from the raw estimate. This method also performs
well, and the computation time is short, especially for responses with few dimensions.
It becomes more difficult to implement for responses with a large number of dimen-
sions.

PRECISION OF SINGLE NEURONAL CODES

Over the past few years it has become increasingly certain that the time course of
responses carries information. There are several demonstrations of time-dependent
processes beyond the ones we have studied. The discoveries of Eckhorn et al. (1988)
and Gray and Singer (1989) of the oscillatory periods of neural activity in the
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Figure 3.4 Neural network used for estimating conditional probabilities. The inputs are the
Tesponse representations (e.g., spike count, principal component coefficients, spike times).
The network has one hidden layer, using units having sigmoidal activation functions. The
output layer has one unit for each stimulus. The activation functions are exponentials that
are normalized to sum to 1.0 after each stimulus during training. During testing, the error
is the negative log-likelihood, which in this classification paradigm is related only to the unit
representing the current stimulus. For a complete description see Kjaer et al. (1994).

monkey visual system led to a lot of work on the role of these oscillatory periods
in perception. Abeles et al. (1993) and Lestienne and Stehler (1987) have shown
that there are patterns of spikes embedded in spike trains that occur substantially
more frequently than chance would predict. Vaadia et al. (1995) showed that the
number of repeating patterns increases in some parts of a behavioral task, suggesting
that the presence of the exact patterns could be a code. All these results taken
together lead us to consider what time resolution is needed to capture the stimulus-
related information in the spike train. The temporal patterns we have seen change
very slowly, over tens of milliseconds. The oscillations just referred to are in the
neighborhood of 40 Hz, meaning that the events underlying them need be measured
only with an accuracy of 25 ms or so. However, the results from Abeles and his
group, and from Lestienne, suggest that there are timings accurate to the millisecond
or better. And recently there have been discussions about whether some processes
related to plasticity, and learning and memory, depend on the simultaneous arrival
of spikes for modification of synapses (Meister, 1996; Shatz, 1996). Again, how this
would work depends on time resolution—What is considered “‘simultaneous” ?
In the analyses described in the preceding sections, the responses were low-pass-
filtered by convolving the responses with a Gaussian pulse before embarking on
the extraction of the principal components (Richmond and Optican, 1987). This
sequence seemed to capture the information. Early in the course of our investiga-
tions, we measured the largest amount of information when the responses were
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low-pass-filtered. In general, the filtering was done with cutoff frequencies in the
15-30 Hz range. In those early investigations we were not particularly concerned
with defining the time resolution more carefully. Recently, we tried to detect
stimulus-related information carried in response representations that used more
precise time resolution. Again we made use of information theory.

In measuring information, we must postulate a code to represent the data. If
more than one code could exist, we can ask which coding of the data conveys the
largest amount of information. In Heller et al. (1995), we postulated 23 different
codes and asked which of these carried the largest amount of stimulus-related
information in data from both complex cells in V1 and single inferior temporal
(IT) neurons. These codes were permutations of the exact spike times, here including
the time of the first spike in the stimulus-related burst (we were fortunate in that
both classes of neuron are nearly silent when no stimulus is present on the receptive
field), the times of all the spikes, and a code made up of ones and zeros at each
time bin (here 1 ms) of the response. We also used the spike count, the principal
components of either the times, the binary code, or the low-pass-filtered response.
The amounts of information carried by these different codes are shown in Figure
3.5. The best representations were principal components of low-pass-filtered re-
sponses. It always helped to include the spike count, which is nearly always a
reasonably good code. In our measurements, using the neural network including
the spike count as a part of the code probably gives rise to a little more information
because the first principal component combines both the spike count and a little
temporal weighting. If the spike count is included, the network does not need to
find the spike count in the solution.

Finding that the best representation is a low-pass-filtered version of the response
suggests another way to look at these results. We can ask: If we count only spikes,
what is the widest spike counting window (in time) that can be used before we
need to know something about the pattern of spikes to represent all the information?
In Figure 3.6 we see that the information increases slowly with the width of the
spike count window as we increase the window size from 8 ms to 32 ms for a V1
neuron. We found that the principal components start to have an advantage when
the window is wider than 32 ms in V1 and 64 ms in IT. These effects are nearly
identical to the result we got with low-pass filtering: the optimal bandwidth is about
30 Hz in V1 cortex and 15 Hz in IT cortex. These results show that very little, if
any, information is missed when the response is represented by the spike count in
time windows up to 30 ms.

These spike counting windows seem broad when one looks at the responses. For
example, in the fly visual system the precision of the spike timing is more exact in
higher frequency portions of the response (de Ruyter van Steveninck and Bialek,
1988; Bialek et al., 1991). Intuitively, this makes sense: when there are only a few
spikes, the position of a spike in time can be specified broadly without affecting
other spikes; however, when there are a large number of spikes, there are fewer
open positions in time for them.

In our earlier work (Heller et al. 1995), we were examining all the responses
taken together. Frequently there are stimuli that elicit relatively few spikes, and
those influence the results because the solution for the network must cover a large
range. In more recent investigations we preferentially examined the most vigorous
responses. It appears that the time of the first spike in vigorous responses is more
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precise; it can carry information using a time resolution of 15-20 ms. None of the
other spikes in the response need to be specified at that resolution to preserve
stimulus-related information. None of this precludes the use of more exact timing
to carry information. Rather, we have an indication that the timing does not seem
to specify the information about which stimulus appeared in this paradigm. It could
also be that more exact timing is important only when considered in conjunction
with other neurons.

NATURAL RESPONSE VARIABLES

The use of the principal components in conjunction with information theory led to
the conclusion that the stimulus-related response was multidimensional: that is, it
would take two or more parameters to describe the stimulus-related variance. The
data analyses in the time domain using the time windows confirmed this result.
This is a very powerful conclusion. However, the generality of the methods leaves
us short of knowing much about the internal structure of the neural response code.
We would like to know whether the code, even if multivariate, provides information
about a single stimulus variable or, instead, whether the different response parame-
ters encode different aspects of the stimulus.

In the past, we showed that there is independent information about luminance
and stimulus form in the responses of V1 neurons (Gawne et al., 1991). At that
time, we were not able to relate any specific parameter of the temporal code to a
particular stimulus feature. We undertook new studies that were targeted at identify-
ing the relation between response features and stimulus features. In these experi-
ments we asked how single primary visual cortical V1 complex cells respond to
stimulus patterns made visible by their textures rather than by their brightness. We
found that the latency of complex cells doubled from 45 to 90 ms when the stimuli
were made visible by texture only (Gawne et al., 1996a) (Fig. 3.7).

When we studied the relation between luminance contrast and orientation on
the responses of these neurons, the latency increased as the contrast decreased
(Fig. 3.8). Surprisingly, however, the latency was almost unchanged as the orienta-
tion changed at high contrast, even when the response was very weak. At low
contrast both the latency and the response strength were affected by the orientation.
Upon comparing the sets of data from the texture and luminance contrast experi-
ments, we found that the patterns defined by texture had responses that were similar
in latency and strength to those defined by low luminance contrast; for the textures
we chose, the responses to the texture-defined stimuli were the same as the responses
for bars defined by 10% luminance contrast (Fig. 3.9). Our analysis shows that the
latency and the response strength are independent with respect to orientation and
cue. The response strength is a code about the bar’s orientation and the latency is
code about how visible it is (i.e., how well the bar stands out from the background).

The classical models of complex cells cannot predict this independence of latency
and response strength, since they were formulated to describe the response strength
only and did not attempt to provide a description of how responses vary in time
when stationary visual images appear. Therefore, we developed a model that pro-
vides these relations:
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Figure 3.5 The amount of stimulus-related information that could be extracted from the
responses of (A4) V1 and (B) IT neurons using 23 different codes to represent the neuronal
response. The representation that yielded the most information used both low-pass filtering
of the spike train with a Gaussian kernel (5 ms SD in V1 and 13 ms 8D in IT), followed
by compression with the principal components. Generally, between three and five prin-
cipal components yielded the greatest amount of information. The order of the repre-
sentations for the entire 320 ms response (from best to worst) is: c5gpc c3gpc Igpc
Egpc cBgpc 8gpccl3gpc 1l3gpc ctpc ctl c¢ct3 1L3g tpc
ct 8g t ¢ bpc 5g 3g t3 tl bwhere ¢ = the mean spike count;
b = a binary vector in which each element represents the presence or absence of a spike
in a particular 1 ms segment of the response; t = the times of the spikes; t1 = the time
of the first spike; t3 = the times of the first three spikes; i = the
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Figure 3.6 Amount of information in sliding window of different widths for one V1 neuron.
Windows of different widths were slid across the responses. The stimulus-elicited information
available from the spike count alone was compared to the information. available using
principal components. In this example the number of principal components needed to capture
the information for the widest window is shown above the solid line. From the bottom, the
other lines are the information in the 16, 24, 32 ms windows. In these shorter windows only
one principal component was needed, and it conveyed the same amount of information as
the spike count. Thus, it is only in the largest time window shown here (48 ms) that having
a representation other than the spike count confers an advantage.

intervals between successive spikes; i~! = the reciprocals of these intervals; 3g 5g 8g
139 = low-pass-filtered versions of the binary impulse representation b obtained by convolv-
ing the spike train with Gaussians of standard deviations of 3, 5, 8, and 13 ms, and resampling
the resulting continuous waveforms at 4 ms intervals; ¢ t = the spike times as in t, augmented
by the spike count €3 ctl = the first spike time and the total spike count; ct3 = the
first three spike times and the total spike count; tpc = up to five principal components of
the spike times; ctpc = principal components of the spike times, plus the spike count;
bpc 3gpc etc. = up to five principal components of the representations b and 39 59 &g
1395 and cbpc c3gpcetc. = bpc 3gpc etc., augmented by the spike count.
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Figure 3.7 Example of the latency difference seen for a set of bars defined by texture
compared to bars defined by luminance (A). The tuning curves (B) show response the
number of spikes during the 270 ms stimulus presentation as the distance from the center;
the direction of the point indicates the bar orientation. Tuning curves at the bottom show
that the tuning remains the same. The rasters show that the response to the texture defined
bar is delayed by up to 40 ms. This set was typical for the 65 complex cells recorded in
these experiments.

Strength = a;cos(8) + axlogior + a3 (3.3)
and

-7

Latency = b1(2 — logwa)cos[2<0 )] — b2 logip)a)] + b3 (3.4)

where a’s and b’s are constants, 8 is the orientation varying between —w/2 and
72, and « is the luminance contrast, varying between 1% and 100%. In these
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Figure 3.8 Surfaces showing the relation between response strength or latency, and orienta-
tion and luminance contrast (A, B) Surfaces for data from one neuron. (C, D) Surfaces for
the model of those data. The response strength is closely related to changes in orientation
but shows only a small decrease as luminance contrast decreases. Latency, however, is nearly
unaffected by orientation at high contrast, and the effect of orientation becomes large
only at very low luminance contrast. At low contrast, there is frequently no response at
nonoptimal orientations.

equations we use luminance contrast. We are now working on extensions that will
provide the connection between texture differences and luminance contrast.

RELATION OF CODES WITHIN NEURONAL POPULATIONS

To this point we have discussed the structure of individual neuronal codes. However,
as pointed out in the introduction, we must know how neurons act together within
populations. Intuitively, it seems plausible, indeed even likely, that neurons that
are located in close proximity receive many inputs in common. This appears to be
the governing principle for retinotopic organization. We can surmise that the same
rule isin effect for inferior temporal cortex because inferior temporal cortex neurons
found near each other respond to members of the same set (Fujita et al., 1992;
Gawne and Richmond, 1993; Tanaka, 1993). This grouping of neurons is the basis
for the idea of columnar organization.

We can ask how much information about the stimulus is shared by neighboring
neurons within the cortex. But what stimulus set do we use? We desire a stimulus
set that reveals (1) all possible responses for each neuron (i.e., the full dynamic
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range of the neuron) and (2) all possible response combinations across the pair of
neurons. In inferior temporal cortex, the rules for determining neuronal selectivity
are not known. Thus, it is difficult to make any a priori prediction about how the
responses of one neuron relate to the responses of its neighbors.

In both V1 and inferior temporal cortex, we presented a set of two-dimensional
black and white patterns based on Walsh functions, a set we have used before (Fig.
3.104) (Richmond et al., 1987, 1990; Gawne and Richmond, 1993; Gawne et al.,
1996b). In inferior temporal cortex the stimuli were centered at the point of fixation.
In V1 we determined the optimal position, size, and orientation of the bar, and we
centered the stimuli on the receptive field of one of the two neurons. In V1, the
largest response to Walsh patterns of the index neuron was on average significantly
larger (49.5 spikes/250 ms + 3.2, SEM, n = 26) than the largest response to the
bars (39.4 = 5.7), even though we worked hard to find the optimal bar (Fig. 3.10B).
Thus, the Walsh patterns elicited a significantly larger dynamic range than the bars
we used.

The data from the pairs of neurons were analyzed in three ways:

How much of the signal variance or noise variance of one neuron could be
predicted by its neighbor?

How much information about the stimulus is carried in common by neighbor-
ing neurons?

Are these related to the classical spike cross-correlogram?

The signal is taken to be the average response to each stimulus. The correlation
between the average responses to the stimulus set across the neuronal pairs ac-
counted for 19% of the variance in V1 and 22% in inferior temporal cortex. When
the stimulus set was restricted to oriented bars, the variance accounted for in the
regression of the signals was greater, 40%. When two neurons have correlated
signals, they carry the same information, and unless we are trying to remove noise
that is introduced by those neurons, having neurons carry the same information
seems wasteful. Therefore, it is important to use a stimulus set that shows the full
encoding capability of the neurons. Our results seem to show that this set of
oriented bars yields a substantial underestimate of the potential independence of
the responses of neighboring neurons. Our results raise the strong possibility that
although V1 neurons are very sensitive to orientation, orientation is not the basis
for encoding information about two-dimensional, black and white patterns. The
amount of variance in the noise that could be accounted for in one neuron by using
the responses of the other was 5.5% in both V1 and inferior temporal cortex. Thus,
the correlation of the noise is considerably less than the correlation in the signal.
Using the neural network we asked whether the following equation held:

I(S;A,B) = I(S;A) + I(S;B) (3.5)
Using the results from the neural network, we calculated the ratio:

I(S;A,B)

I(S;A) + I(S;B) (3.6)
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Figure 3.10 The Walsh stimulus set of 64 orthogonal stimuli mapped onto an 8 X 8 resolution
grid. The contrast-reversed set was also used. The stimuli were centered at the center of the
optimal black or white bar, whichever elicited the bigger response. (B ) The average maximum
firing rate for 26 neurons tested with both Walsh stimuli and bars; solid segments show the
standard errors of the mean.
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Figure 3.11, which sets the ratio of the information carried by the two neurons
taken separately against the ratio taken together, shows that the amount of informa-
tion carried in common is about 10% when the measure just described is applied.

Finally, we looked at the classical spike cross-correlograms. For the limited size
samples we had, there was no significant predictive relation between the spike
cross-correlograms and the response variance in number of spikes that could be
predicted about one neuron’s responses when the other neuron’s responses were
known.

The values of the noise correlation are similar to those reported from middle
temporal (MT) cortex by Zohary et al. (1994). Gochin et al. (1991) recorded pairs
of neurons in IT cortex, also. They concentrated more on the cross-correlogram
structures, but they did report the correlations across response histograms from
neuronal pairs. They used a small stimulus set and a quite different method for

Redundant Independent Joint
e ! —

Number of Pairs
W

0.5 06 0.7 08 09 1.0 1.1 1.2

Fraction of Joint Information

Striate: n=26, two monkeys

IT: n=28, two monkeys

Figure 3.11 Information ratios (see text) for pairs of both V1 complex cells and IT neurons.
If the information from the two neurons taken together had been equal to the sum of the
information from each taken alone, the ratio would have been 1.0. If both neurons carried
exactly the same information the ratio would have been 0.5. If there had been a joint code
(e.g., a difference code), the ratio would have been larger than 1. The histograms were
centered at about 0.9, with only a few pairs having ratios slightly above one.
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calculating the correlations. They report the correlation coefficients » rather than
the r°. The average value for r? (assuming 2 can be gotten by squaring r), was
lower than ours, on the order of 0.1 for neurons recorded from one electrode, and
even lower for neurons recorded from two electrodes. Thus, it appears from all
these measurements that adjacent neurons have only a very modest degree of
correlation in signals and an even smaller mount of correlation in the noise.

Tanaka (1993) also pointed out that although the neurons in a local region of
IT cortex all respond to stimuli in the same limited class, the pattern of responses
of the separate neurons to the different members of this general class of stimuli
appeared nearly independent. Tanaka’s results in IT cortex are essentially the same
as our results in both IT and striate cortex, where neurons located close to each
other share sensitivity to a general class of stimuli (objects of related form in IT;
bars or edges of the same general location in space and/or orientation in striate),
but exposure to a larger and more varied set of stimuli reveals a much broader
spectrum of sensitivity.

Problems Given Data from Large Neuronal Arrays

The discussions above keep alluding to problems in assessing the results of experi-
ments involving data from many neurons. As the number of neurons goes up, the
difficulty in estimating the joint response distributions accurately increases, as well.
Therefore, it would be very useful to know whether simple models of the distribution
can be formed. In recent work we have shown that the noise around each mean
spike count is modeled well by a Gaussian (Gershon et al., 1996). In addition, it is
well known that the response variance rises as the mean response strength increases
(this must be true because of the floor effect—there can be no negative firing rates).
Consider the information processing by a pair of neurons. Denote the total response
strength by R and noise strengths by N for both neurons. Assume that the correla-
tions between the responses of two neurons and between the noise strengths are
p, and p,, respectively, and that the response and noise are both Gaussian. The
amount of information each neuron can individually convey is

(3.7)

Jointly, two neurons (for convenience, assume that R/N is the same for both) convey

_ 1, Rd-p)
Ligim = 5 In ) (3.8)
If we define the degree of redundancy as

D, = 2L~ fiom (3.9)

1

then
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(- )
ln——2
p,=_1=r (3.10)

.3

The total response R includes N and thus is always bigger than N. If p? < g2, D,
is positive and there is redundancy. This is the case we intuitively expect. When p?
= pi, there is no redundancy. When p? > p?, the two neurons carry information in
a joint code. The second and third cases show that two neurons can be correlated
without being redundant. Equation 3.8 shows that correlated signals decrease the
total information that is transmitted and that correlated noise actually increases
the total information. Taking advantage of the correlated noise requires use of
a joint code. (Hint: Think about differential recording; the subtraction removes
correlated noise.) Equation 3.10 shows that the full correlational structure (i.e.,
both for the response and for its noise) must be known before any conclusions
regarding redundancy can be made from signal and noise measurements.

The measured signal-to-noise ratio was 1.25, the average correlation between
noise of different neurons is about 0.055 in both V1 and IT cortices, and the signal
correlation between two adjacent neurons is about 0.20. The information was about
20% redundant. From the measured values of the averaged transmitted information
I, p;, and p,, D, is predicted to be 19%, which is virtually the same as the experimental
value of 20%.

NEURONAL CODES AND CORTICAL ORGANIZATION

This chapter started by listing two important ideas about cortical processing. One
is that neurons are tuned, with one particular stimulus eliciting the largest response
and small changes in this “optimal” stimulus causing more or less regular decreases
in the response strength. However, neurons appear to have responses that are
multidimensional, with the different aspects of a neuronal response specialized to
carry information about different aspects of a stimulus. At a minimum, the idea of
a tuning curve must be extended. In simple situations, where identifiable aspects
of the response can be easily related to different aspects of the stimulus (e.g., a
response latency closely related to the stimulus contrast and a response strength
closely related to stimulus orientation), the extension is straightforward: a set of
two-dimensional tuning surfaces replaces a single one-dimensional tuning curve
(see eq. 3.10). In other situations it is not clear how one would go about representing
the tuning of a neuron. For example, in the results obtained when the Walsh patterns
were used as stimuli, it is not clear what aspects of these complex two-dimensional
patterns are being represented in the temporal patterns of excitation and inhibition
we see in the neuronal responses, so we cannot as yet draw tuning surfaces for
these conditions. In either case we are faced with the task of determining how these
multivariate codes are interpreted by the rest of the nervous system.

The second principle of cortical processing to be addressed is that neurons with
similar stimulus or motor sensitivities tend to be grouped in columns where the
processing is similar. First Mountcastle (1957) and then Hubel and Wiesel (1962)
proposed that cortex is divided into functional columns, and the neurons within a
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column have similar response properties. However, we now find that the responses
of adjacent neurons in cortex share only about 10% of their stimulus-related informa-
tion. How can these two seemingly different results be reconciled?

Consider a small group of neurons in cortex (e.g., the neurons in a column).
Assume that these neurons all receive inputs that have something in common—in
primary visual cortex, all the inputs to a particular column will tend to carry informa-
tion about the same region of visual space; in other areas such as IT cortex, the
common factor to the inputs is not known, but presumably there is some pattern.
All by itself the limited nature of the inputs to a given region will tend to make
the neurons in this region sensitive to particular classes of stimuli (e.g., in striate
cortex, stimuli in a particular part of visual space). However, this constraint says
nothing about the relationships between the neurons and the large numbers of
stimuli that belong to the same general class. By having different patterns of connec-
tions from the same set of inputs, these neurons can have response properties that
are independent of each other within the same broad class of stimuli. The simplest
possible case is illustrated by a cartoon (Fig. 3.12). Each neuron computes a different
function of the inputs. We would require that each neuron compute the function
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Figure 3.12 Highly simplified cartoon diagram of what might be happening in cortical
columns. Different columns get different sets of input fibers (ABCD for the column on the
left and EFGH for the column on the right). However, neurons within each individual column
are connected to these afferents in different ways, here schematized by different patterns
of excitatory connections. Inhibitory connections and/or processing by interneurons could
also have the same effect. If different functions of the afferents were calculated, the neurons
within each column would have response properties nearly independent of each other across
the entire set of input patterns that could be supported by its set of inputs. The independent
patterns of activity by the neurons within a column are the basis for interactions that maximize
the use of the relatively great density of local connections. Note that the use of very simplified
stimulus sets would fail to uncover this organization. If one probed this structure with a
stimulus set having only two conditions, one where all of ABCD were “on” and all of EFGH
were “‘off,”” and the other condition where all of ABCD were off and all of EFGH were
on, one could determine only that the neurons in any single column all tend to respond to
the same stimuli; the diversity of behavior within a column could not be observed.
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of the inputs using strictly local connections and that the wiring changes from neuron
to neuron be as few as possible, consistent with achieving relatively independent
processing of local inputs.

Why should neurons in a column have such diverse response properties? Why
not simply have all the neurons code for a specific stimulus feature redundantly,
thus giving a single very precise and robust message? We don’t know the answer
to this question just yet, but we can speculate. Consider the problem of correlated
signals. To the extent that the noise on a neuron’s output is due to the intrinsic
unreliability of the neuron itself, then averaging the outputs of multiple identical
neurons would be useful. It would be expensive in that the amount of signal process-
ing possible would be very limited (noise decreases by \/n, where n is the number
of elements). Furthermore, recent results show that neurons may not be very noisy,
making averaging an even weaker candidate as a signal processing strategy (Mainen
and Sejnowski, 1995).

Another way to view the problem is to consider the great cost of connections
within the nervous system. As with the design of large computer systems, the
number and length of connections may be a greater constraint on the operation of
a complex nervous system than the number of active processing elements (Van
Essen, 1997). It is obvious from the geometry that most connections will be local
and long-range connections will be in some sense expensive to the system and fewer
in number. That this constraint would cause regions of cortex that are processing
information about related stimuli to lie in close proximity to each other has been
pointed out before. What is more subtle is the notion that while one might well
want neurons that are carrying information about stimuli that are in some sense
related to lie next to each other, it would be incredibly wasteful for neurons carrying
strongly correlated information to lie next to each other. The reason should be
obvious: if the responses of two neurons are correlated, there is no need to connect
. them. To maximize the utilization of local connections, there should be strong
pressure to maximize the diversity of response properties in a local region, to
maximize, in turn, the ability of local groups of neurons to interact with each other
over their comparatively rich set of local connections. If for some reason the nervous
system did have many neurons carrying duplicated signals, it might make more
sense for these identical neurons to be as widely distributed as possible, to maximize
their ability to interact via local connections with other neurons that are carrying
different information.
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